Chemistry SOL Study Sheet

Name: _

Strategies:

- Identify what unit is given and what is asked for. Be on the lookout for extra information!
- You don't have to know all big words in a question. (They do this on purpose.) Apply what you know.
- If an option is not something we talked about in class, it's probably not the answer!
- Write down equations you need to use, like PV=nRT, before plugging in numbers.
- If all else fails, plug in answers to see which one works
- Look at axes on graphs!

Independent Variable - variable that the experimenter manipulates

Dependent Variable - variable that changes in response to the independent variable; the results that are measured Control - a standard for comparison

All other possible variables are made "constants"

Significant Figures Rules (1) all digits are significant (2) zeros in a "sandwich" (3) zeros after digit & decimal Addition/Subtraction of measurements = round to least number of decimal places Multiplication/Division of measurements = round to least number of significant figures

Percent error: experimental - true x 100

true

precision: numbers close to each other

accuracy: numbers close to true value

 $\underline{\mathsf{Density}} = \frac{mass}{volume}$

"displacement" = change in volume; add object to graduated cylinder; volume goes up

Atomic number = protons Mass number = protons + neutrons **Electrons** = same as protons *if neutral*

<u>Cation</u> = positive charge, lost electrons <u>Anion</u> = negative charge, gained electrons **<u>Isotope</u>** = different versions of an element; same # protons, different # neutrons calculate number of neutrons = mass number - atomic number

 $\frac{Atomic}{M_{GGG}} = (mass\ number\ A \times abundance\ A) + (mass\ number\ B \times abundance\ B) + \cdots$ Mass

Nitrogen-14^{←mass number} N-14 ←mass number $mass\#\rightarrow 14$ N-3 \leftarrow charge atomic $\#\rightarrow 7$

Electronegativity - ability of an atom to attract electrons to itself **Ionization energy** - energy required to remove an electron

electron configuration: 1s²2s²2p⁶3s²3p⁶4s²

Noble gas notation: (ex) $Cl = [Ne] 3s^2 3p^5$

• Electrons fill lowest energy orbitals first (Aufbau Principle); singly before pairing (Hund's Rule)

<u>Tonic bond</u> = cation + anion; electrons transferred; always cross charges, never use prefixes <u>Covalent bond</u> = nonmetal + nonmetal; electrons shared; always use prefixes (except mono on first element)

Molecular shapes: linear (two atoms; 2 bonds, 0 lone pairs) trigonal planar (3 bonds, no lone pairs, boron) trigonal pyramidal (3 bonds, 1 lone pair) tetrahedral (4 bonds) bent (2 bonds, 2 lone pairs)

polar: unequal sharing of electrons; lone pair on the central atom; NO lone pairs or two atoms with different elements nonpolar: equal sharing of electrons; NO lone pairs or two atoms with the same element

<u>Intermolecular forces</u>: think of magnets! hydrogen bonding > dipole-dipole > London dispersion forces

Polymer: made of many small repeating subunits called monomers

Saturated: all single bonds to carbon

Unsaturated: double or triple bond to carbon

Balancing equations: Write down equations on paper before balancing! Don't try to do it in your head!

Synthesis: $A + B \rightarrow AB$ Single Replacement: $A + BC \rightarrow AC + B$ Decomposition: $AB \rightarrow A + B$ Double Replacement: $AB + CD \rightarrow AD + CB$ $\underline{\textit{Combustion}} \colon \textit{C}_{x} H_{y} + \textit{O}_{2} \rightarrow \textit{CO}_{2} + H_{2} \textit{O}$ Neutralization: Acid + Base → Water + Salt molar mass = "mass of one mole" = formula mass = molecular mass

Avagadro's number: 6.022 x 10²³ particles

22.4 L = molar volume of a gas at STP (standard temperature and pressure)

mole ratio = coefficients

Molar Conversions

conversions of the same compound

Stoichiometry

convert one compound to a different compound; must be given balanced equation

Heat = $\mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathbf{T}$ (mass x specific heat x change in temperature)

H_{vaporization} (lig-gas)

H_{fusion} (solid-lig)

Endothermic - absorb E
$$\Delta H = \oplus$$

Exothermic- release E $\Delta H = \Theta$

 $K = {}^{\circ}C + 273$

- Catalysts speed up a reaction by decreasing activation energy
- Increasing temperature increases kinetic energy, speed of molecules, number of collisions
- enthalpy "heat content" (H)

entropy - the amount of disorder

Gas Laws Always use Kelvin for temperature

$$P_1V_1=P_2V_2$$
 Inverse relationship

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \qquad \text{Direct relationship}$$

Combined Gas Law $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Dalton's Law of

$$P_{\text{Total}} = P_1 + P_2 + P_3 + \dots$$

Partial Pressures
$$\frac{\%}{100} \times TOTAL = Partial Pressure$$

Ideal Gas Law

$$PV = nRT$$
 n = moles

Molarity: M=mol

Dilution:
$$M_1V_1 = M_2V_2$$

- Electrolyte: ionic compounds dissociate in water, conduct electricity
- Colligative properties: Boiling point elevation; Freezing point depression. (ex) Salt makes boiling point ↑ freezing point ↓

Acids begin with -H Bases end in -OH

pH = hydrogen ion concentration

$$pH + pOH = 14$$

 $pH = -log[H^{+1}]$

acid

neutral

base

Equilibrium: rate of forward reaction = rate of reverse reaction; shift away from increase & towards a decrease

Polyatomic Ions: OH-1 hydroxide

NO₃-1 nitrate

50₄-2 sulfate

PO₄-3 phosphate

NH4+1 ammonium

CO3-2 carbonate