Acids and Bases

What qualifies as an acid or a base?

Two Different Theories:

	Arrhenius	Bronsted-Lowery
Acid	Dissociates to make H ⁺¹	Proton (H ⁺¹) donors
Base	Dissociates to make OH ⁻¹	Proton (H ⁺¹) acceptors

The pH Scale:

pH – concentration of H⁺¹

pOH – concentration of OH⁻¹

pH + pOH = 14

Characteristics of Acids & Bases

<u> </u>		
Acids	Bases	
sour taste	bitter taste	
low pH	slippery feel	
turns litmus paper red	high pH	
, ,	turns litmus paper blue	

Naming Acids – acids start with an "H" (ex) HCI = hydrochloric acid

Naming Bases – bases have an "OH" (e

(ex) NaOH = sodium hydroxide

exception: ammonia = NH₃

Neutralization: acid and base combine to make salt and water

Example: $HCI + NaOH \rightarrow NaCI + HOH$

Acid Base salt water (H₂O)

<u>Titration</u> – laboratory technique to determine concentration of H⁺¹ and OH⁻¹

Indicators show color changes at certain pH levels.

<u>Indicator</u> – a substance that causes a solution to change color to indicate acidity or basicity