Double Replacement Reactions AB + CD → AD + CB **always pair a cation (+) with an anion (-) - 1) Switch ions (cation from 1st with anion from 2nd) - Cross charges - 3) Balance ### Synthesis Reactions $$A + B \rightarrow AB$$ - Write element symbols - 2) Combine metal and nonmetal - 3) Cross charges for elements that are bonded - 4) Check elements by themselves to see if they are diatomic - 5) Balance #### Diatomic Elements elements that exist in pairs when by themselves (not bonded to other elements) Why? 8 valence electrons (there are also a few other reasons) #### How can I remember them? acronym: Br I N Cl H O F | 1
IA | | | | | | | | | | | | | | | | | 18
VIIIA | |--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-------------------|--------------------| | 1
H
1.008 | IIA | | | | | | | | | | | 13
IIIA | 14
IVA | 15
VA | VIA | VIIA | 2
He
4.00 | | 3
Li
6.94 | 4
Be
9.01 | | | | | | | | | | | 5
B
10.81 | 6
C
12.01 | 7
N
14.01 | 8
O
16.00 | 9
F
19.00 | 10
Ne
20.18 | | 11
Na
22.99 | 12
Mg
24.31 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al
26.98 | 14
Si
28.09 | 15
P
30.97 | 16
S
32.07 | 17
CL
35.45 | 18
Ar
39.95 | | 19
K
39.10 | 20
Ca
40.08 | 21
5c
44.96 | 22
Ti
47.88 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | 26
Fe
55.85 | 27
Co
58.93 | 28
Ni
58.69 | 29
Cu
63.55 | 30
Zn
65.39 | 31
Ga
69.72 | 32
Ge
72.61 | 33
As
74.92 | 34
5e
76.96 | 35
Br
79.90 | 36
Kr
83.80 | | 37
Rb
85.47 | 38
St
87.62 | 39
Y
88.91 | 40
Zr
91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Ic
(98) | 44
Ru
101.1 | 45
Rh
102.9 | 46
Pd
106.4 | 47
Ag
107.9 | 48
Cd
112.4 | 49
In
114.8 | 50
5n
118.71 | 51
5b
121.75 | 52
Te
127.60 | 53
1
126.90 | 54
Xe
131.29 | | 55
Cs
132.91 | 56
8a
137.33 | 57
La
138.9 | 72
HE
178.5 | 73
Ta
180.9 | 74
W
183.9 | 75
Re
186.2 | 76
Os
190.2 | 77
iz
192.2 | 78
Pt
195.1 | 79
Au
197.0 | 80
Hg
200.6 | 81
33
204.4 | 82
89
207.2 | 83
Bi
208.98 | 84
Po
(209) | 85
At
(210) | 86
Ba
(222) | #### Our Chemical Reaction Toolbox: If elements are bonded together: NaCl cross charges If elements are by themeselves: Na + Cl check to see if they are diatomic ## Decomposition Reactions AB → A + B - 1) Write element symbols - 2) Break apart reactant into elements - 3) Cross charges for elements that are bonded - 4) Check elements by themselves to see if they are diatomic - 5) Balance # Single Replacement Reactions A + BC → AC + B - Write element symbols & charges of + or - - 2) Check activity chart to see if reaction happens - 3) Switch ions (ALWAYS put a positive with a negative, never two positives together) - 4) Cross charges for elements that are bonded. Check for diatomics for elements by themselves. - 5) Balance ### $A + BC \rightarrow AC + B$ - Write element symbols & charges of + or - - 2) Check activity chart to see if reaction happens - Switch ions (ALWAYS put a positive with a negative, never two positives together) - Cross charges for elements that are bonded. Check for diatomics for elements by themselves. - 5) Balance Aluminum chloride + fluorine → ### **Combustion Reactions** - Put down CO₂ and H₂O as products - Balance carbons & hydrogens first - Set up algebra problem for oxygen & solve - Double coefficients if necessary