Chemistry, Mrs. Cook

Chapter 10 Notes of Concepts

- Atoms and molecules are too small to count by usual means!!
- Avogadro's number = 6.022 x 10²³ particles = 1 mole
- Types of particles in chemistry:
 - o atoms
 - molecules (covalent bonds)
 - o formula units (ionic bonds)
- molar mass = mass of one mole of a substance
 - o found using the periodic table
 - o also referred to as formula mass or molecular mass
- 1 mole of a gas at STP = 22.4 L
 - STP = "standard temperature & pressure"
 - o 0°C or 273 K
 - o 1 atmosphere of pressure

Flow chart for molar conversions:

Assignment 1 - Understanding "The Mole"

- 1) Answer in your own words, using an example: "What is a mole?" Avogadro's number, which is 6.022 x 10²³ particles of anything. Chemists specifically use atoms, molecules, and formula units. BUT a mole could represent anything. For example, a mole of manatees would be 6.022×10^{23} manatees.
- 2) How many atoms are in a mole of anything? 6.022×10^{23}
 - a. What is the title of this number? Avogadro's number
- 3) What is the mass of one mole of $C_6H_{12}O_6$ (glucose)

180.18 g

4) Find the molar mass of $Al_2(5O_4)_3$

342.2 g

5) Determine the formula mass of (NH₄)₂S

68.08 g

- 6) How many liters of any gas are in one mole? 22.4
- 7) Draw the chart that shows how to convert between grams, moles, and liters:

Assignment 2 - Single Step Conversions

Examples of how to use dimensional analysis for molar conversions:

$$2.50 \frac{\text{mol}}{\text{mol}} \times \frac{16.00 \text{ g}}{1 \frac{\text{mol}}{\text{mol}}} = \underline{\qquad} g$$
 $24.02 \text{ g} \times \underline{1 \text{ mol}} = \underline{\qquad} \text{mol}$ 12.01 g

8) Convert 0.89 mol of CaCl2 to grams.

98.77 g

9) How many moles are in 158.1 grams of PbSO₄?

0.52 mol

10) Find the mass of 1.112 mol of HF. <u>Hint</u>: What unit is "mass" measured in? grams!

22.25 g

- 11) What are the three types of "particles" in chemistry? atoms, molecules, formula units
- 12) Determine the number of atoms that are in 0.58 mol of Se.

13) How many moles of barium nitride (Ba₃N₂) are there in 4.7×10^{24} formula units?

7.80 mol

14) Determine the number of molecules that are in 1.25 mol of O_2 .

7.53 x 10²³ molecules

- 15) What does "STP" stand for? standard temperature & pressure
- 16) What volume will 0.37 mol of N_2 gas occupy at STP?

8.29 L

17) A canister with a volume of 69.4 L contains how many moles of oxygen at STP?

3.10 mol

18) A chemical reaction produces 13.8 mol of carbon monoxide. What volume will the gas occupy at STP?

309.12 L

Assignment 3 - Multi-Step Conversions

Examples of how to use dimensional analysis for multi-step molar conversions:

**your dimensional analysis setup will have "two bars"

$$\frac{2.0 \times 10^{10} \text{ molecules}}{6.022 \times 10^{23}} \times \frac{312.4 \text{ grams}}{1 \text{ mol}} =$$

19) What mass of C_2H_6 is in 6.45 x 10^{24} molecules?

322.18 g

20)How many formula units are in 5.1 g of TiO_2 ?

3.85 x 10²² formula units

21) What mass of helium will occupy 5.6 L at STP?

1.0 g

22)What volume would 46.8 grams of Cl_2 occupy at STP?

14.79 L

23)What volume would 3.33×10^{25} atoms of krypton occupy at STP?

24) How many molecules are there in 12 L of carbon dioxide at STP?

 3.23×10^{23} molecules

25) What would the volume be of 2.3 \times 10²³ molecules of CO at STP?

8.56 L

1238.66 L

26) What is the mass of 3.62 \times 10²⁴ molecules of methanol (CH₃OH)?

192.36 g

Review Questions for Assignment 3

27) How many particles are in a mole? 6.022 x 10²³

28) How many liters are in one mole of a gas? 22.4

29) What are the three types of "particles" in chemistry?

atoms, molecules, formula units

30) What are the units for molar mass? grams or $\frac{g}{mol}$

Assignment 4 - Percent Composition

Steps:

- 1. Find mass of individual elements
- $\frac{\text{part}}{\text{whole}} \times 100 = \text{percent}$
- 2. Add together to get molar mass
- 3. Divide individual mass of element by the total molar mass **multiply by 100
- 31) What is the percent composition of each element in GaBr₃?

% Ga = 22.53 % % Br = 77.47 % 32) What is the percent composition of each element in $Al_2(CO_3)_3$?

% AI = 23.06 % % C = 15.40 % % O = 61.54 %

33) What is the percent composition of phosphorus in $Mq_3(PO_4)_2$?

% P = 23.56 %

Relationships between Empirical and Molecular Formulas

Steps:

- 1. Find molar mass of empirical formula
- 2. Determine the factor relating the empirical and molecular formulas
 - Use multiplication or division
- 3. Multiply the subscripts of the empirical formula by that factor
- 34)What is the molecular formula of a compound that has a molar mass of 132.24 g/mol and an empirical formula of C_3H_8 ?

C₉H₂₄

35)A molecular compound has a molar mass of 128.14 g/mol and the empirical formula SO_2 . What is the molecular formula?

S₂O₄

36)A compound has a molar mass of 283.6 g/mol and its empirical formula is P_2O_5 . What is its molecular formula?

 P_4H_{10}

37)What is the molecular formula of a substance that has an empirical formula of NO_2 and a molecular mass of 138 g/mol?

 N_3O_6

Assignment 5 - Calculating Empirical Formulas Steps: 1. Put a in place of % ... if not already in a

- 1. Put g in place of % ...if not already in grams (@ we are assuming the sample size is 100 g because % are out of 100)
- 2. Divide each type of atom by its atomic mass
- 3. Find smallest number and divide all atoms by that number
- 4. Use the results (a "mole ratio") as subscripts in the chemical formula
- 5. Adjust fractions to whole numbers using multiplication Example: C_1H_2 doesn't exist, so multiply all subscripts by the denominator two to get C_2H_7
- 38) A compound is 75% carbon and 25% hydrogen. What is its empirical formula?

CH₄

39) A compound is 3.061g of hydrogen, 31.633g of phosphorus, and 65.306g of oxygen. What is the empirical formula?

H₃PO₄

40) A compound is 38.8% chlorine and 61.2% oxygen. What is its empirical formula?

 Cl_2O_7

41) A compound is 35.93% aluminum and 64.07% sulfur. What is its empirical formula?

 AI_2S_3

42) A compound is 50% sulfur and 50% oxygen. What is its empirical formula?

 SO_2

43) An 87g sample contains 6.89g carbon and 80.22g chlorine. What is the empirical formula?

CCI₄

Review Questions for Assignment 5

- 44) What is the empirical formula of:
 - a) $C_6H_{12}O_6$ CH₂O b) N₂O₄ NO₂ c) C_3H_6 CH₂ d) C_6H_6 CH
- 45) Find the percent composition of each element in Fe2(SO4)3

```
% Fe = 27.93 %
% S = 24.06 %
% O = 48.00 %
```

46) A compound has molar mass of 51g and an empirical formula of NH3. What is the molecular formula?

 N_3H_9

47) What is the mass of 4.30×10^{21} molecules of octane (C_8H_{18})?

0.81 g

Assignment 6 - Calculating Molecular Formulas

Steps: **this is a continuation of Steps #1-5 for "Calculating Empirical Formulas"

- 6. Calculate mass of empirical formula and compare to given mass (see Assignment #4)
- 7. Multiply each subscript of empirical formula by multiplying factor
- 48) A compound is 82.76% carbon and 17.24% hydrogen. It has a molecular mass of 58g. What is the molecular formula?

 C_4H_{10}

49)	Find the molecular formula of a compound that contains 42.56g palladium and 0.80 g of hydrogen. The molar mass of the compound is 216.8 g/mol .
	Pd_2H_4
50)	A compound is 30.435% nitrogen and 69.565% oxygen. It has a molecular mass of 92g. What is the molecular formula?
	N_2O_4
51)	Find the molecular formula of a compound given that a 212.1g sample contains 169.7g of carbon and 42.4g of hydrogen and the molar mass is 30 g/mol.
	C_2H_6
52)	What is the molecular formula of a compound that has 83.72% carbon and 16.28% hydrogen and a molar mass of 86.2 g?
	C_6H_{14}
Revi	iew Questions for Assignment 6
53)	What volume will be occupied by a gas containing 6.02×10^{23} atoms at STP? 22.4
54)	What is the mass of one mole of $Ca(OH)_2$? 74.1 g
55)	What is the mass of 2 moles of HgO? 433.18 g