\qquad

Chapter 10 Notes of Concepts

- Atoms and molecules are too small to count by usual means!!
- Avogadro's number $=6.022 \times 10^{23}$ particles $=1$ mole
- Types of particles in chemistry:
- atoms
- molecules (covalent bonds)
- formula units (ionic bonds)
- molar mass = mass of one mole of a substance
- found using the periodic table
- also referred to as formula mass or molecular mass
- 1 mole of a gas at STP $=22.4 \mathrm{~L}$
- STP = "standard temperature \& pressure"
- $0^{\circ} \mathrm{C}$ or 273 K
- 1 atmosphere of pressure

Flow chart for molar conversions:

Assignment 1 - Understanding "The Mole"

1) Answer in your own words, using an example: "What is a mole?"

Avogadro's number, which is 6.022×10^{23} particles of anything. Chemists specifically use atoms, molecules, and formula units. BUT a mole could represent anything. For example, a mole of manatees would be 6.022×10^{23} manatees.
2) How many atoms are in a mole of anything? 6.022×10^{23}
a. What is the title of this number? Avogadro's number
3) What is the mass of one mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
180.18 g
4) Find the molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
342.2 g
5) Determine the formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
68.08 g
6) How many liters of any gas are in one mole? 22.4
7) Draw the chart that shows how to convert between grams, moles, and liters:

Assignment 2 - Single Step Conversions

Examples of how to use dimensional analysis for molar conversions:

$$
2.50 \mathrm{mot} \times \frac{16.00 \mathrm{~g}}{1 \mathrm{~mol}}=\mathrm{g}_{\mathrm{OR}} 24.02 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12.01 \mathrm{~g}}=\square \mathrm{mol}
$$

8) Convert 0.89 mol of CaCl_{2} to grams.
98.77 g
9) How many moles are in 158.1 grams of PbSO_{4} ?
0.52 mol
10) Find the mass of 1.112 mol of HF. Hint: What unit is "mass" measured in? grams!
22.25 g
11) What are the three types of "particles" in chemistry? atoms, molecules, formula units
12) Determine the number of atoms that are in 0.58 mol of Se.
3.49×10^{23} atoms
13) How many moles of barium nitride $\left(\mathrm{Ba}_{3} \mathrm{~N}_{2}\right)$ are there in 4.7×10^{24} formula units?
7.80 mol
14) Determine the number of molecules that are in 1.25 mol of O_{2}.
7.53×10^{23} molecules
15) What does "STP" stand for? standard temperature \& pressure
16) What volume will 0.37 mol of N_{2} gas occupy at STP?

8.29 L

17) A canister with a volume of 69.4 L contains how many moles of oxygen at STP?
3.10 mol
18) A chemical reaction produces 13.8 mol of carbon monoxide. What volume will the gas occupy at STP?
309.12 L

Assignment 3 - Multi-Step Conversions

Examples of how to use dimensional analysis for multi-step molar conversions:
**your dimensional analysis setup will have "two bars"

19) What mass of $\mathrm{C}_{2} \mathrm{H}_{6}$ is in 6.45×10^{24} molecules?
322.18 g
20)How many formula units are in 5.1 g of TiO_{2} ?
3.85×10^{22} formula units
21) What mass of helium will occupy 5.6 L at $S T P$?
1.0 g
22) What volume would 46.8 grams of Cl_{2} occupy at STP?
14.79 L
23) What volume would 3.33×10^{25} atoms of krypton occupy at STP?

$$
1238.66 \text { L }
$$

24)How many molecules are there in 12 L of carbon dioxide at STP?
3.23×10^{23} molecules
25)What would the volume be of 2.3×10^{23} molecules of $C O$ at STP?
8.56 L
26)What is the mass of 3.62×10^{24} molecules of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$?
192.36 g

Review Questions for Assignment 3

27)How many particles are in a mole? 6.022×10^{23}
28)How many liters are in one mole of a gas? 22.4
29) What are the three types of "particles" in chemistry?
atoms, molecules, formula units
30)What are the units for molar mass? grams or $\frac{g}{\mathrm{~mol}}$

Assignment 4 - Percent Composition

Steps:

1. Find mass of individual elements
2. Add together to get molar mass
$\frac{\text { part }}{\text { whole }} \times 100=$ percent
3. Divide individual mass of element by the total molar mass
**multiply by 100
31) What is the percent composition of each element in GaBr_{3} ?

$$
\begin{aligned}
& \% ~ G a=22.53 \% \\
& \% ~ B r=77.47 \%
\end{aligned}
$$

32)What is the percent composition of each element in $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$?

$$
\begin{aligned}
& \% ~ A I=23.06 \% \\
& \% ~ C=15.40 \% \\
& \% ~ O=61.54 \%
\end{aligned}
$$

33)What is the percent composition of phosphorus in $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
\% P = 23.56%

Relationships between Empirical and Molecular Formulas

Steps:

1. Find molar mass of empirical formula
2. Determine the factor relating the empirical and molecular formulas

- Use multiplication or division

3. Multiply the subscripts of the empirical formula by that factor
34)What is the molecular formula of a compound that has a molar mass of $132.24 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{8}$?

$$
\mathrm{C}_{9} \mathrm{H}_{24}
$$

35)A molecular compound has a molar mass of $128.14 \mathrm{~g} / \mathrm{mol}$ and the empirical formula SO_{2}. What is the molecular formula?

$$
\mathrm{S}_{2} \mathrm{O}_{4}
$$

36)A compound has a molar mass of $283.6 \mathrm{~g} / \mathrm{mol}$ and its empirical formula is $\mathrm{P}_{2} \mathrm{O}_{5}$. What is its molecular formula?

$$
\mathrm{P}_{4} \mathrm{H}_{10}
$$

37) What is the molecular formula of a substance that has an empirical formula of NO_{2} and a molecular mass of $138 \mathrm{~g} / \mathrm{mol}$?

$$
\mathrm{N}_{3} \mathrm{O}_{6}
$$

Assignment 5 - Calculating Empirical Formulas

Steps:

1. Put g in place of $\%$...if not already in grams
(今we are assuming the sample size is 100 g because $\%$ are out of 100)
2. Divide each type of atom by its atomic mass
3. Find smallest number and divide all atoms by that number
4. Use the results (a "mole ratio") as subscripts in the chemical formula
5. Adjust fractions to whole numbers using multiplication

Example: $\mathrm{C}_{1} \mathrm{H}_{2}^{-}$doesn't exist, so multiply all subscripts by the denominator two to get $\mathrm{C}_{2} \mathrm{H}_{7}$
38) A compound is 75% carbon and 25% hydrogen. What is its empirical formula?

CH_{4}

39) A compound is 3.061 g of hydrogen, 31.633 g of phosphorus, and 65.306 g of oxygen. What is the empirical formula?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}
$$

40) A compound is 38.8% chlorine and 61.2% oxygen. What is its empirical formula?
$\mathrm{Cl}_{2} \mathrm{O}_{7}$
41) A compound is 35.93% aluminum and 64.07% sulfur. What is its empirical formula?
$\mathrm{Al}_{2} \mathrm{~S}_{3}$
42) A compound is 50% sulfur and 50% oxygen. What is its empirical formula?
SO_{2}
43) An 87 g sample contains 6.89 g carbon and 80.22 g chlorine. What is the empirical formula?

CCl_{4}

Review_Questions for Assignment 5
44) What is the empirical formula of:
a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mathrm{CH}_{2} \mathrm{O}$
b) $\mathrm{N}_{2} \mathrm{O}_{4} \quad \mathrm{NO}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{6}$
CH_{2}
d) $\mathrm{C}_{6} \mathrm{H}_{6}$
CH
45) Find the percent composition of each element in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

$$
\begin{aligned}
& \% \mathrm{Fe}=27.93 \% \\
& \% \mathrm{~S}=24.06 \% \\
& \% \mathrm{O}=48.00 \%
\end{aligned}
$$

46) A compound has molar mass of 51 g and an empirical formula of NH_{3}. What is the molecular formula?
$\mathrm{N}_{3} \mathrm{H}_{9}$
47) What is the mass of 4.30×10^{21} molecules of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$?
0.81 g

Assignment 6 - Calculating Molecular Formulas

Steps: **this is a continuation of Steps \#1-5 for "Calculating Empirical Formulas"
6. Calculate mass of empirical formula and compare to given mass (see Assignment \#4)
7. Multiply each subscript of empirical formula by multiplying factor
48) A compound is 82.76% carbon and 17.24% hydrogen. It has a molecular mass of 58 g . What is the molecular formula?
$\mathrm{C}_{4} \mathrm{H}_{10}$
49) Find the molecular formula of a compound that contains 42.56 g palladium and 0.80 g of hydrogen. The molar mass of the compound is $216.8 \mathrm{~g} / \mathrm{mol}$.
$\mathrm{Pd}_{2} \mathrm{H}_{4}$
50) A compound is 30.435% nitrogen and 69.565% oxygen. It has a molecular mass of 92 g . What is the molecular formula?

$$
\mathrm{N}_{2} \mathrm{O}_{4}
$$

51) Find the molecular formula of a compound given that a 212.1 g sample contains 169.7 g of carbon and 42.4 g of hydrogen and the molar mass is $30 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{C}_{2} \mathrm{H}_{6}
$$

52) What is the molecular formula of a compound that has 83.72% carbon and 16.28% hydrogen and a molar mass of 86.2 g ?

$$
\mathrm{C}_{6} \mathrm{H}_{14}
$$

Review_Questions for Assignment 6

53) What volume will be occupied by a gas containing 6.02×10^{23} atoms at STP? 22.4
54) What is the mass of one mole of $\mathrm{Ca}(\mathrm{OH})_{2}$? 74.1 g
55) What is the mass of 2 moles of HgO ? 433.18 g
